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Abstract

In a recent article (Carri GA, Batman R, Varshney V, Dirama TE. Polymer 2005;46:3809 [17]) we presented a model for networks of

helical polymers. In this article we generalize our results to include the effect of temperature and focus on the mechanical, conformational

and thermo-elastic properties of the network. We find that the non-monotonic stress–strain behavior observed at constant temperature also

appears in the stress–temperature behavior at constant strain. The origin of this behavior is traced to the induction and melting of helical

beads by the application of large strains or reduction in temperature. Other conformational properties of the polymer strands are also

discussed. We also study the network entropy and heat capacity, and find a non-monotonic dependence on temperature and strain. Our study

shows that the entropy is controlled by the helical content whenever the latter is significant. Otherwise, the entropy corresponds to the one of

a network made of random coils. In addition, the study of the heat capacity shows that strain shifts the helix-coil transition temperature

significantly. Other results are also discussed.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Networks; Elastomers; Helical polymers
1. Introduction

The large deformability and almost complete recover-

ability of elastomers have made them objects of scientific

study for several decades. As in the first experiments of

Gough and Joule [1,2] testing has generally involved the

measurement of mechanical stress corresponding to some

sort of strain, most often uniaxial extension or compression.

Additional information relating mechanical properties to

molecular structure has been obtained from a variety of

experimental techniques including swelling experiments,

NMR, SAXS, SANS and others [3].

Experimental studies have shown that elastomers consist

of macromolecular chains, cross-linked into a network, that

can change their conformations in response to stress.

Theories based on this model, described in a recent review
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by Erman and Mark [4], simplified the calculations by

making various assumptions. In the earliest theories [2,5,6]

the network strands were treated as perfectly flexible

‘phantom chains’ that passed freely through each other,

interacting only at cross-links. In such networks, the stress

arises from the decrease in the entropy of the network chains

due to the deformation. Interactions between strands were

incorporated into later theories [7].

Computer simulations have generally followed two

different methods in studying elastomers. The more direct

method of modeling the fully-constructed network is

exemplified in the work of Grest and Kremer, and Escobedo

and de Pablo [8,9]. The less direct but more common

method is the Monte Carlo modeling of a single, isolated

chain to obtain the radial distribution function of end-to-end

distance, which is then used in the standard three-chain

model of rubberlike elasticity to find the stress–strain

behavior of the network [2,6]. This method has been

extensively used with synthetic systems [4].

Most of the studies have focused on synthetic elastomers.

However, biopolymers are richer in terms of their

conformational properties; thus, networks made of
Polymer 46 (2005) 10128–10138
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biopolymers, called bioelastomers, can be expected to have

a more interesting stress–strain behavior. The secondary

structures of biopolymers, such as a-helices and b-sheets, as

well as their tertiary structures, can be melted at sufficiently

high temperatures or pulled apart by sufficiently large

strains. These structures would therefore produce significant

temperature- and strain-dependence in the mechanical

properties of networks. The presence of solvent, which

also affects the formation and melting of such structures,

would add a further dimension to the behavior of swelled

networks.

In order to take full advantage of the potential of novel

bioelastomers, much work remains to be done. Indeed, there

are very few studies of bioelastomers such as elastin and

resilin [4,10]. In general, the investigation of biopolymer

mechanics has largely been restricted to single-chain

elasticity experiments. These have been greatly encouraged

by the recent development of single molecule force

spectroscopy (SMFS) which has been applied to RNA and

DNA, the polysaccharides dextran and xanthan, the muscle

protein Titin, and various other bio- and synthetic polymers

[11].

Researchers are already beginning to build new materials

from biopolymers [12], in the hope of harnessing the endless

variety and complexity of their behavior, which has

motivated the modeling work in this article. Our method

follows the common scheme in which the simulation of a

single chain generates the radial distribution function, which

we use as input in the Three-chain model. We describe the

helical polymer using a model recently developed by us

[13]. The study of helical polymers, which exist in a helical

conformation at low temperature and melt into a random-

coil conformation in response to an increase in temperature

or a change in solvent quality [13,14], will allow us to focus

on the simplest of secondary structures, the a-helix. The

transition described above produces a complex mechanical

behavior that changes at around the transition temperature

of a single chain. We will also compare our simulation

results to the theoretical ones of Kutter and Terentjev for

networks of helix-forming polymers [15].

The Monte Carlo algorithm of Wang and Landau [16] is

used to simulate the homopolypeptide chain. The simulation

results, in conjunction with the three-chain model, will be

used to calculate the stress–strain behavior of the network,

as well as the conformational properties of the constituent

chains for different temperatures and degrees of strain.

This article is organized as follows. In the second section,

we briefly describe our simulation protocol and the three-

chain model. In the third section, we present our results for

the stress–strain and thermo-elastic behavior of the network

and single chain, and rationalize the effect of temperature

and strain on various equilibrium properties, including the

entropy of the network. Finally, we conclude the present

article by summarizing the most important findings of our

work and with the appropriate acknowledgements.
2. Simulation protocol and theoretical model
2.1. Model and simulation methodology

The helical polymer was modeled using the freely

rotating chain model, in which each bead represents an

amino acid residue. The interactions between pairs of beads

were modeled with a hardcore potential energy, and the

tendency toward the helical conformation was modeled

using a criterion based on the concept of torsion of a curve

[13,17]. Each bead that satisfied this criterion was

considered to have a helical conformation and was assigned

a negative enthalpy called C, which stabilizes the helical

conformation. Otherwise, the bead was considered to have a

random coil conformation, which was used as the reference

state. We chose CZK1300 K, so that the helix-coil

transition temperature is close to 300 K. These concepts

were implemented in a Monte Carlo simulation based on the

Wang–Landau algorithm [16]. The outcome of this

procedure is the density of states, which we used to

compute the free energy and radial distribution function of

the polymer [17]. The latter is the input required by the

three-chain model of rubberlike elasticity. More details

about the simulation protocol and model employed can be

found in Ref. [17].
2.2. The three-chain model

The three-chain model assumes that inter-chain inter-

actions are independent of deformation and averages the

free energies of three chains oriented in three orthogonal

orientations, which are deformed in the affine limit at

constant volume. The macroscopic deformations of the

network are liZLi/Li0, where Li and Li0 indicate the

deformed and undeformed dimensions of the network in

the ith direction, respectively. For uniaxial extension the

conservation of volume implies that lxZl,lyZlzZlK1/2.

Thus, the total free energy of a network made of f chains per

unit volume relative to the unstrained state is given by the

equation

Dfnet Z f
f ðR0lÞ

3
C

2f ðR0lK1=2Þ

3
Kf ðR0Þ

� �
(1)

R0 is the average end-to-end distance of a chain in the

undeformed state and f(x) is the free energy (in units of

Boltzmann’s constant, kB) of a single chain with end-to-end

distance x. f(x) is obtained from f(x)ZDf(x)CF(T) where

F(T) is the free energy of a chain, independent of x [13] and

Df(x) is the free energy (relative to the free chain) of a chain

with end-to-end distance equal to x. The latter is given by

Df(x)ZKT ln(W(x)), where W(x) is the probability distri-

bution of the end-to-end distance obtained from the Monte

Carlo simulation. Differentiating Eq. (1) with respect to l at

constant temperature gives the nominal stress of the network
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s0 Z
fR0

3
ðFðR0lÞKlK3=2FðR0lK1=2ÞÞ (2)

where F(x) is the retraction force of a single chain

FðxÞ Z
vðDf ðxÞÞ

vx

� �
T

(3)

The total entropy of the network relative to the

unstrained state is given by

DSnet Z f
SðR0lÞ

3
C

2SðR0lK1=2Þ

3
KSðR0Þ

� �
(4)

where S(x) is the single-chain entropy in units of kB. The

latter is obtained from

SðxÞ Z DSðxÞCSðTÞ (5)

where DS(x)ZK(v(Df(x))/vT)x is the entropy (relative to

the free chain) of a chain with end-to-end distance equal to

x, and S(T) is the entropy of a free chain [13]. Finally, the

heat capacity of the network relative to the unstrained state

is

DðCvÞnet Z f
CvðR0lÞ

3
C

2CvðR0lK1=2Þ

3
KCvðR0Þ

� �
(6)

where Cv(x) is the single-chain heat capacity in units of kB

and is obtained from

CvðxÞ Z T
vðDSðxÞÞ

vT

� �
x

CCS
v ðTÞ (7)

where CS
v ðTÞ is the heat capacity of a free chain [13].
3. Results and discussion

Fig. 1 shows the radial distribution function of a single

chain with 30 beads, g(R), as a function of the end-to-end

distance, R, and temperature, T. The helix-coil transition

temperature, Thc, is 311 K and is mainly determined by the
Fig. 1. Radial distribution function as a function of the end-to-end distance

and temperature for a chain with 30 beads. The position of the peak shifts

towards larger values of the end-to-end distance at the helix-coil transition

temperature.
parameter C(ZK1300 K) of the model. Therefore, the

range of temperatures shown (200–500 K) covers all

possible behaviors of the chain from the helical structure

at low temperatures to the random coil conformation at high

temperatures. Fig. 1 shows that as T decreases, the peak in

g(R) shifts towards larger values of R due to the formation of

helical sequences, which make the chain stiffer. This shift

occurs around Thc. Careful examination shows that the

single peak present at 200 K splits into two peaks at slightly

higher temperatures, leading to a multimodal distribution,

which agrees with previous studies on poly(oxymethylene)

[18]. POM is known to adopt the helical conformation under

some conditions. At high temperatures the peak occurs at

smaller values of R and is broader than at low temperatures

due to the absence of helical sequences.

Fig. 2 shows the retraction force of the chain, F, as a

function of R and T. F increases monotonically with

increasing R at high T, as expected for a random coil.

However, as T decreases below Thc and the tendency to form

helical strands increases, F becomes a non-monotonic

function of R, first increasing and then decreasing before a

final increase to very high values at the fully extended

length of the chain. The behavior of F is related to the

helical content, q (Fig. 3), which increases with decreasing

T. However, its dependence on R is more complex. At a

given temperature, q first increases as the chain is stretched

due to induction of helices by the external force [13]. This

increase continues until the helices are pulled apart, i.e. until

R becomes too large to allow helical sequences to remain

intact. Upon further extension, q decreases to zero at the

fully extended length of the chain. When plotting q as a

function of R for various (constant) values of T, the peaks in

all the curves occur at the same value of R (Z31,

approximately). This is roughly the same value of R at

which F exhibits its first sudden increase in Fig. 2. Thus, at

low temperatures, the non-monotonic dependence of F on R

is related to the unraveling of helices. If we now look at q as
Fig. 2. Retraction force as a function of the end-to-end distance and

temperature for a chain with 30 beads. The dependence on end-to-end

distance becomes non-monotonic below the helix-coil transition

temperature.



Fig. 3. Helical content as a function of the end-to-end distance and

temperature for a chain with 30 beads. The helical content increases with

decreasing temperature for all values of end-to-end distance and decreases

to zero for values of the end-to-end distance larger than the end-to-end

distance of the full helix.

Fig. 4. Average number of beads per helical strand as a function of the end-

to-end distance and temperature for a chain with 30 beads. At low

temperatures, when R is close to 25, n changes from 15 to 25, signaling the

formation of longer helical strands.

Fig. 5. Average number of helical domains as a function of the end-to-end

distance and temperature for a chain with 30 beads. The step-like decrease

from two domains to one as the end-to-end distance increases below the

helix-coil transition temperature signals the reunification of two domains,

which occurs at the same value of R where n increases from 15 to 25 in

Fig. 4.
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a function of T for fixed values of R, the typical sigmoid-like

shape is observed. However, Thc increases with increasing

values of R until, of course, it disappears when the degree of

stretching does not allow the formation of helical strands.

This behavior is simple to understand. At low temperatures,

values of R smaller than the equilibrium value, which

corresponds to the perfect helix, force the helix to break into

two helical strands. These strands are shorter than the full

helix; consequently they are less stable in the thermodyn-

amic sense. Therefore, less thermal energy is required to

melt them and Thc decreases. Increasing R reduces the

constraint, longer helical strands are compatible with the

constraint and do form. Since the helices are longer, they are

more stable; thus, Thc increases. However, as soon as R

becomes larger than the end-to-end distance of the helix,

then the length of the helical strands starts to decrease.

Therefore, these strands become less stable and Thc

decreases.

The molecular mechanisms responsible for the behavior

of q can be clarified by examining the average number of

beads per helical strand (n) and the average number of helical

strands in the chain (m). Fig. 4 shows n as a function of R and

T. Although the increase at large end-to-end distance is more

pronounced than for q, the basic trends are the same.

Comparing the constant-temperature cross-sections of n with

those of q (not shown) reveals the same pattern at all

temperatures: n increases with increasing R until the latter

reaches a value close to 31, and then decreases to zero

rapidly. The plot of m as a function of R and T in Fig. 5 shows a

similar behavior at high temperatures. In this regime, m and n

increase and decrease simultaneously; thus, the helical

content must increase by nucleation and growth of short

helical strands that rarely merge together, and decrease by

unraveling of these strands from the ends. Below Thc, m

decreases monotonically with increasing R. First, m stays

roughly constant at a value of about 2 for small values of R,
and then, when Rz25, it drops to a second plateau where it

remains roughly constant at a value of 1. This drop occurs

when n is approximately 15 (half the number of beads in the

chain). What is happening is easy to understand. For small

values of R the helix is broken in two shorter helical strands

that are parallel to each other. Increasing the value of R

relaxes this constraint; thus, more conformations can be

explored. At Rz25 the constraint is such that the chain can

form one long helical strand (although it is not a complete

helix). Thus, m decreases from 2 to 1 and n increases from 15

to about 25. For values of R larger than the end-to-end

distance of the helix, n decreases rapidly while m remains

constant until dropping discontinuously to zero at full

extension. This indicates that the single helical strand

unravels from the ends.

The entropy of a single chain, S, is plotted as a function

of R and T in Fig. 6. It is controlled by q wherever the latter



Fig. 7. Heat capacity as a function of the end-to-end distance and

temperature for a chain with 30 beads. The shift of the position of the peak

to higher temperature as end-to-end distance increases results from the

increased helix-coil transition temperature associated with the formation of

longer and more thermally stable helical domains.
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is significant, since the formation of a helix reduces the

number of configurations available to the chain. At very low

temperatures, S decreases with increasing R due to the

increase of the helical content. When R reaches the value at

which the helix starts to unravel, S begins to increase rapidly

due to the interconversion of helical beads into coil beads,

which have higher configurational entropy. On the other

hand, at high temperatures, S decreases monotonically, as

one would expect for a random coil. In addition, a detailed

analysis of the plot shows a sudden decrease in S at full

extension caused by the stretching of the random coil after

all helical strands have completely unwound. Some small

negative values of S are seen at large values of R, which we

ascribe to increased statistical error in this region. Also, if R

is kept constant, Fig. 6 shows that S increases with

increasing temperature except in the region where increased

statistical error is observed (Rw31).

Fig. 7 shows the heat capacity, Cv, of a single chain as a

function of R and T. Cv is expected to reach a peak at Thc. As

is seen in Fig. 7, Thc and the sharpness of the transition

increase with increasing R. Cv exhibits a ridge that runs

slightly off-parallel to the R axis in the mid-range of

temperatures. As R increases from 0 to about 31, Thc shifts

from 300 to 350 K, and the sharpness of the peak increases.

Close examination shows that, when R exceeds 31 and the

proximity to the full extension begins to unwind the helices,

the peak suddenly shifts to lower temperatures in agreement

with the fact that shorter helical strands are less

thermodynamically stable. The dependence of the sharpness

and location of the transition on R can be explained using

simple physical concepts. If R is small, then the polymer

strand forms two parallel, short helices. Since they are

shorter than the complete helix, Thc should be lower and the

width of the transition should be broader than for the

complete helix [13]. As R increases, longer helical strands

can form, which shifts Thc to higher temperatures and makes
Fig. 6. Entropy as a function of the end-to-end distance and temperature for

a chain with 30 beads. The non-monotonic dependence on end-to-end

distance below the helix-coil transition temperature results from the

induction and melting of helices by elongation.
the transition narrower [13] until the extension of the chain

is too large and the helix breaks apart, leaving short helical

strands and random coil domains. The presence of short

helices shifts Thc back to lower temperatures, as observed in

our simulation study.

Fig. 8(a) shows the stress of the network as a function of

the strain, l, and T for the cases of uniaxial extension and

compression. The quantity plotted is s*Z3s 0/fR0, where s 0

is the nominal stress. As the temperature decreases below

Thc, the range of allowed strain narrows due to the increase

in R0 and the finite extensibility of the chain. In addition, the

dependence of s* on l at constant T changes from a

monotonic increase with increasing l to a non-monotonic,

more complex behavior similar to the one observed in

Fig. 2. Let us elaborate this point. We start by analyzing s*

for the case of simple extension (lO1). For all the cases

studied, s* increases with increasing l, as expected.

However, the physical origins of this increase are more

complex than in the case of simple synthetic polymers.

Indeed, there are two kinds of forces resisting the

deformation of the network: the decrease in the entropy of

the system, which is also present in synthetic elastomers and

can be described using classical theories of rubber elasticity,

and the formation of helical strands, which is known to be

facilitated by the application of external mechanical forces

[13]. Fig. 8(b) shows cross-sections of Fig. 8(a) that show

the dependence of s* on l at 200, 250, 300, 350 and 400 K.

Let us examine the curves for temperatures below Thc: 200,

250 and 300 K. s* first increases with increasing l,

indicating that the network gets stronger as we stretch it,

then decreases which points to a softening of the network

before a final, sharp increase to very high values due to the

finite extensibility of the polymer strands. At temperatures

above Thc the softening of the network is not observed, i.e.

s* always increases with increasing l. However, at 350 K, a

clear ‘shoulder’ is observed before the final increase of s*.



Fig. 8. (a) Rescaled stress (s*) (in thousands) as a function of l and

temperature. (b) Constant-temperature cross-sections. (:) 200 K, (;)

250 K, (C) 300 K, (line) 350 K, (dots) 400 K. (c) Rescaled stress (s*) as a

function of temperature for various values of l. (line) 0.8, (dashed line) 1.2,

(C) 1.6, (:) 2.0, (;) 2.4. The non-monotonic stress–strain behavior,

which is not observed in synthetic elastomers, appears at temperatures

below the helix-coil transition temperature. The non-monotonic thermo-

elastic behavior is also shown.
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The ‘shoulder’ does not appear at 400 K, since virtually no

helical strands are present at this temperature prior to

stretching. Thus, the origin of the decrease in s* for

temperatures below Thc is directly related to the presence of

helical strands before the network is stretched.

Under uniaxial compression (l!1), which is equivalent

to biaxial extension in the orthogonal directions, the system
displays behavior that is similar to that associated with

uniaxial extension that can be rationalized using the same

arguments presented above. The only difference is that s* is

negative, which indicates that the system is under

compression.

Fig. 8(c) shows the thermo-elastic behavior of the network

for values of l equal to 0.8, 1.2, 1.6, 2 and 2.4. In the case of

uniaxial elongation and for T above Thc, s* increases with

increasing T, as expected for a network of random coils. The

rise in T increases the entropy of the system, thus

strengthening the retraction forces present in the network.

However, if T is decreased and crosses Thc, enthalpy starts to

favor the formation of helical strands. Thus, in order to

impose the strain on the network, more force has to be applied

to overcome the tendency of the system to form helices.

Consequently, s* increases with decreasing T. The tempera-

ture at which the first increase in s* occurs is the same

temperature at which q and n reach a maximum, but m is

larger than one implying that short helices are present in the

network. A further decrease in T shows a decrease in the

stress until a minimum is reached. Beyond this point, the

stress increases rapidly. The existence of a minimum can be

understood using basic physical concepts. As T is reduced,

the tendency of enthalpy to favor the formation of one long

helical strand increases [13]. However, the applied strain puts

a constraint on the end-to-end distance. As a consequence of

these two conditions, the average polymer strand forms only

one helical strand, which is shorter than at slightly higher

temperatures, and melts the short helices to satisfy the

geometric constraint imposed by the applied strain. Thus,

more beads adopt the random coil conformation, making the

chain more flexible, and, consequently, s* decreases.

However, further decrease of T strengthens the tendency to

form long helical sequences; therefore, more force has to be

applied to keep the applied strain constant, i.e. s* increases.

These results are illustrated in Fig. 9, where we plot s*, q and

m on the same plot for lZ1.2. The dependence of q and n on T

are the same as can be observed from Figs. 10(a) and 11.

Observe that for lZ2.4 the softening of the network is not

observed in Fig. 8(c). For this value of l, the deformation is so

large that helical sequences do not form. However, the

enthalpic driving force is present; thus, s* increases as T is

reduced. The behavior of s* for the case of compression, l!
1, can be understood using similar arguments.

Fig. 10(a) shows q as a function of l and T. Below Thc, q

decreases monotonically with increasing or decreasing l,

while, above Thc, it first increases before dropping at large l.

Specifically, at low temperatures q is high. For example, at

250 K the value is close to 0.9, indicating that 90% of the

beads are in the helical conformation. Observe that this

value remains constant until it starts to decrease for values

of l larger than l0(T). In the case of 250 K, the value of l0Z
1.15. This implies that extension ratios larger than 1.15

interfere with the formation of helical strands, i.e. the

elongation of the network is too large for the formation of

helical strands, or, in other words, the polymer strands are



Fig. 9. s* (Dashed line), m (continuous line) and q (double dashed-dotted

line) as functions of temperature for lZ1.2. The first sharp increase of the

stress with decreasing temperature is caused by an increase in the helical

content of the chain, where many helical strands are present. The minimum

occurs when all the helical strands merge into a long one. The large increase

at lower temperatures is a consequence of stretching one long and

thermodynamically stable helical strand.

Fig. 11. Average number of beads per helical strand as a function of l and

temperature.
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overstretched with respect to the end-to-end distance of the

helix. Therefore, an increasing number of segments adopt

the random coil conformation to satisfy the constraint
Fig. 10. (a) Helical content as a function of l and temperature. (b) Helical

content (line) and rescaled stress, s*, (C) as functions of l at 300 K. The

sharp increase in stress coincides with the peak in helical content, indicating

that helices are being torn apart. This requires more energy than stretching

random-coil segments; thus, the stress increases. The subsequent drop in

stress is caused by a rise in entropy associated with the decrease in helical

content.
imposed by the deformation. Consequently, q decreases. It

is important to note that this behavior of q predicted by our

simulation study was also predicted by the theoretical

calculations of Kutter and Terentjev (Fig. 10 in Ref. [15]).

However, they used the Gaussian distribution for the

description of flexible coils, which did not allow us to

carry out a quantitative comparison between theory and

simulations. Nevertheless, the results agree on a qualitative

level. At higher temperatures, e.g. 350 K, the behavior of q

is different. Indeed, upon the extension of the network q first

increases and then decreases in qualitative agreement with

the results of Kutter and Terentjev (Fig. 9 in Ref. [15]). The

initial increase of q indicates that the application of an

external mechanical force first stabilizes the helical

conformation. This increase of q can be achieved in two

ways: first, the helical strands could be longer, i.e. more

beads per strand, and, second, more helical strands could be

formed. A further increase of the extension ratio interferes

with the formation of helices and q decreases.

If l is held constant, then, as T decreases from 500 K for

each value of strain, q increases monotonically until it

reaches a maximum and then decreases to zero. The only

exception occurs for values of l very close to 1. This

increase in q with decreasing T is due to the tendency of the

system to form helices at low temperatures. A further

decrease of T increases the end-to-end distance of the

average polymer strand [13], which becomes slightly

shorter than that of the fully extended conformation. Thus,

q approaches zero with decreasing temperature for any

value of lRLextended/Lhelix; otherwise, the strands would be

overstretched with respect to the fully extended confor-

mation, a result that is not physical. Lhelix and Lextended are

the end-to-end distance of the helix and fully extended

conformation, respectively. In addition, Fig. 10(a) shows

that the peak in q occurs at higher values of T for larger

values of l. This is the consequence of the stabilization of

the helical conformation by the deformation, as discussed

before for the case of the single chain. A more stable helical

structure requires more thermal energy to melt it.



Fig. 12. Number of helical strands as a function of l and temperature.
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Using the results obtained for q and s*, we can now

provide an explanation for the physical origins of the stress–

strain behavior (which, by analogy, also applies to the force-

extension behavior of a single chain in Fig. 2). For this

purpose, we combined the data for s* and q at 300 K in one

plot, Fig. 10(b). Observe that for values of l slightly above 1

both s* and q increase. This implies that more and/or longer

helical strands are formed as we stretch the network. We

discuss this point below. The formation of new helical

strands and/or the increase of the length of the helical

strands decreases the entropy of the system because it

removes many rotational degrees of freedom from the

polymers. Thus, the decrease of the entropy of the network

is faster than in the typical case of synthetic polymers (i.e.

without secondary structures) and, moreover, has two

contributions: first, the loss of entropy due to the elongation

of the random coil segments and, second, the loss of random

coil segments due to the stabilization of the helical

conformation by the external mechanical force.

Fig. 10(b) also shows that when q is about to reach its

maximum, s* increases abruptly. The sharp increase in s*

implies that, for this particular value of l, the polymer

strands are almost completely aligned parallel to the

stretching force, and all the random coil segments are

almost fully stretched. Consequently, the external force is

resisted by the helical strands. Since these strands are more

stable due to the molecular driving forces that stabilize the

helical conformation (e.g. hydrogen bonds), more force is

required to overcome this thermodynamic barrier and melt

the helices. Consequently, s* increases. Upon further

increase of l, the network overcomes the thermodynamic

barrier, and fewer and shorter helices remain. Consequently,

the number of segments in the random coil conformation

increases, which, in turn, increases the entropy of the

network. Thus, the network softens and s* decreases.

Finally, for very large deformations, the polymer strands are

fully stretched and s* diverges to infinity.

The previous rationalization of the stress–strain behavior

at 300 K is also valid for 350 K. However, the behavior at

250 K is slightly different. Indeed, q (Fig. 10(a)) remains

approximately constant while s* increases, Fig. 8(a). This

implies that even for small values of l the external force is

resisted by the helical strands. This is to be expected

because 90% of the beads are in the helical conformation. A

similar behavior is seen at 200 K.

In order to understand the behavior of the helical content,

we plot the average length of a helical strand, n, and the

average number of helical strands, m, as functions of l and T

in Figs. 11 and 12, respectively. Comparison of Fig. 11 with

Fig. 10(a) shows that n follows the same behavior as q.

Comparison of Fig. 10(a) with Fig. 12, however, shows that,

near Thc, increasing q decreases m and vice versa. This will

be discussed in detail below. Cross-sections of the plots in

Figs. 11 and 12 show that at 250 K both n and m are

approximately constant until they decrease sharply for

values of l larger than 1.15. Thus, the behavior of q follows
the ones of n and m. These results indicate that the

mechanism leading to the decrease of q with increasing

values of l involves helical strands unwinding from the

ends. At 300 K, the situation is different. m Decreases with

increasing l, which implies that the deformation decreases

the average number of helical strands; however, n increases.

Eventually, n overrides the decrease of m and q increases.

These results suggest that the deformation of the network

tends to merge the helical strands into longer and

thermodynamically more stable ones. Again, for large

deformations the helical strands unwind from the ends.

Finally, the situation changes again at 350 K. In this case

both n and m increase with increasing l. This leads to a

substantial increase in the helical content by a factor of 5

when lz2.4 and indicates that the deformation of the

network stabilizes helical strands of any length.

Cross-sections of Figs. 10(a) and 11 show that n has the

same temperature dependence of q, both having coincident

peaks. n and m show similar dependences on T and no

significant differences between the positions of peaks for l

values equal to 1.6 and 2.0. This indicates that, for such

strains, the formation and melting of helices involve

winding to, or unwinding from, the ends of helical domains,

rather than the breaking up or merging of sequences.

However, at a strain of 1.2, q and n begin dropping from

their peaks at about 280 K, while m continues to rise to a

later peak at about 303 K. This indicates that, at smaller

strains, the decrease in q with increasing T originates from

breaking longer sequences into shorter ones.

Let us now rationalize the results obtained for the case of

compression (l!1) briefly. In this case, the network is

compressed in one direction. Consequently, it is stretched in

the two orthogonal directions, because the volume must be

conserved in the three-chain model. Thus, all the results

reported for the case of uniaxial extension, like the increase

in q and n with increasing l, etc. should also appear in

compression for decreasing values of l. This is what all the

plots show. The only difference is that s* is now negative,

indicating that the system is under compression. However,
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all the other features observed for the case of uniaxial

extension are present and can be rationalized using

arguments similar to those employed to understand the

effect of uniaxial elongation.

We now consider the entropy of the network, S. Fig. 13

shows S as a function of l and T. More specifically, what is

plotted is the change in entropy (DSnet/fkB), where the

reference state is the unstrained network. S depends mainly

on q, generally decreasing as the latter increases and vice-

versa, so that the entropy plot is somewhat similar to

Fig. 10(a) turned upside-down. Three regimes can be

identified in Fig. 13. At high temperatures, a compression or

an extension of the network decreases S. This is the

expected behavior for a network made of random coils

because the strain stretches the coils, thus reducing their

entropy. At temperatures close to Thc, an increase in l first

decreases the entropy. There are two driving forces for this.

First, the random coils are stretched, so their entropy

decreases. Second, the force stabilizes the helical confor-

mation. Thus, more beads adopt the helical conformation,

which carries a lower entropy. However, further increase of

l disrupts the formation of helical sequences, and many

beads adopt the random coil conformation. This increases S,

as shown in Fig. 13. Further extension forces the polymer

strands into their fully extended conformations; thus, S

decreases. At low temperatures, most of the system is in the

helical state; thus, the deformation of the network reduces q.

Consequently, more beads become random coils and S

increases.

Two regimes can be observed in Fig. 13 when l is held

constant. For large strains (e.g. lZ1.5) and decreasing

temperatures S first decreases and then increases. The

decrease is a consequence of the tendency of the polymer

strands to adopt the helical conformation at low tempera-

tures, which reduces S. Moreover, the application of strain

facilitates the formation of helices, which results in a

decrease of DS at higher temperatures. Upon further

decrease in temperature, the strands try to form long helical
Fig. 13. Network entropy as a function of l and temperature. As in the case

of the single chain, the non-monotonic behavior below the helix-coil

transition temperature indicates the induction and melting of helices by

mechanical force.
structures. However, the degree of deformation does not

allow the formation of complete helices; thus, short helices

are melted to accommodate the imposed strain and the

enthalpic preference for long helical strands. This increase

in the number of beads in the random coils increases S.

Further reduction of the temperature forces the polymer

strands into their fully extended conformation, and S

decreases. This behavior is valid for values of lRLextended/

Lhelix. For values of l between 1 and Lextended/Lhelix, the

strain is not large enough to facilitate the formation of

helices in a significant way. Thus, S does not show a

decrease. However, since lO1, then S shows an increase as

we lower the temperature, because many beads must adopt

the random coil conformation to accommodate the applied

strain. In addition, the polymer strands never reach their full

elongation.

Fig. 14 shows the heat capacity of the network, Cv, as a

function of l and T. More specifically, what is actually

plotted is the change in heat capacity (DCv/fkB), where the

reference state is the unstrained network. As expected, the

transition temperature (i.e. peak in Cv) increases with

increasing strain; larger strains induce the formation of

longer helical sequences that are thermodynamically more

stable, and thus, require more thermal energy to melt.

Let us now speculate about the effect of chain length. The

Wang–Landau algorithm is computationally very intensive.

Consequently, only relatively short chains can be simulated,

especially if multi-dimensional histograms have to be

computed. This limited our study to chains with 30 beads.

However, we have also carried out studies of helical

polymers using the Wang–Landau algorithm to compute

uni-dimensional histograms. The reduced dimensionality of

the histograms allowed us to study chains with up to 60

beads. Fig. 6 of the first article in Ref. [13] shows the radial

distribution function for a chain with 50 beads. A visual

comparison of this figure with Fig. 1 in this article shows

that a change in the length of the polymer does not alter the
Fig. 14. Network heat capacity as a function of l and temperature.

Analogous to the case of a single chain, the peak indicating a helix-coil

transition shifts to higher temperature as elongation of the network

increases.
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temperature behavior of the radial distribution function in a

significant manner. In particular, Thc is almost independent

of chain length for chains with more than 20 beads.

However, the dependence on R does change. The position of

the peak observed at low temperatures changes, as it is

expected, because the length of the full helix changes.

However, this change is quantitative and not qualitative.

This line of reasoning leads us to conclude that a change in

the length of the chain will only affect the dependence of the

single chain properties, i.e. Figs. 1–7, on temperature and

end-to-end distance quantitatively. Similarly, for the case of

networks, the qualitative behavior of the various physical

properties should not change when the length of the chain

changes. Only quantitative changes will occur.

Perhaps, the most important change that could be

foreseen is a change in the depth of the minimum in the

plots of s* vs. l or T, Fig. 8(b) and (c). As discussed

previously, the physical origin of these minima is the

increase in the number of random-coil segments by melting

of the helical strands due to overstretching or by the

increased tendency to form long helical strands as the

temperature is reduced. Longer chains would have more

segments in the random coil conformation. Therefore, the

depth of the minimum should be larger for longer polymers,

or, equivalently, it should disappear as the polymer becomes

shorter.
4. Conclusions

In this article we have studied the effect of temperature

and strain on the properties of an elastomer made of helical

polymers. We employed a combination of single-chain

Monte Carlo simulations based on the Wang–Landau

algorithm and the three-chain model of rubberlike elasticity.

The helical polymer was modeled with a modified freely

rotating chain model [13].

At the level of a single chain, we found that a decrease in

temperature increases the end-to-end distance due to the

formation of helical strands, which make the chain stiffer.

These strands led to a non-monotonic behavior for the

retraction force at low temperatures. Indeed, the retraction

force of a chain near or below the transition temperature was

found to first increase with increasing end-to-end distance,

then decrease, before finally increasing to large values at

full extension. Concurrently, the helical content first

increases and then decreases to zero for large end-to-end

distances. Our study correlated the behaviors of both

quantities and, furthermore, showed that the non-monotonic

behavior of the force originates from the unraveling of

helical strands at large extensions of the chain.

We also explored the dependence of the single-chain

entropy on the end-to-end distance at various temperatures.

We found that entropy depends on the helical content

strongly. In addition, it decreases with increasing end-to-

end distance. This facilitates the formation of helices.
However, for large extensions, the entropy was found to

increase. The heat capacity was found to have a peak that

shifts to higher temperatures with increasing end-to-end

distance, which indicates that the helix-coil transition

temperature increases with increasing end-to-end distance.

As a result of the non-Gaussian behavior of the single

chain, we found that the stress–strain relationship of the

network shows new features not present in the case of

typical elastomers. Specifically, at low temperatures, the

network stress first increases, indicating a strengthening of

the network, and then decreases before the final increase to

very large values due to the finite extensibility of the

polymer strands. The decrease for intermediate values of the

extension (softening of the network) was proven to be a

consequence of the melting of the helical structure by

overstretching with respect to the end-to-end distance of the

helix. The thermo-elastic behavior of the network proved to

be equally unusual, showing a similar variation of stress

with decreasing temperature at constant strain.

The helical content was also studied. For this quantity,

we found that, except at very low temperatures where the

helical content is approximately constant, it increases with

increasing strain. This implies a stabilization of the helical

conformation by the applied force. However, for large

deformations of the network the helical content decreases to

accommodate the constraint imposed by the applied strain.

This behavior was also seen in the variation of helical

content with decreasing temperature at constant strain. We

also correlated the behaviors of the helical content and

stress, and found that the sharp increase, followed by a

decrease, in the stress was due to the melting of the helical

strands by the applied strain. This correlation was found

both for increasing strain at constant temperature, and for

decreasing temperature at constant strain. Further studies of

the average number and length of the helical strands shed

more light on the mechanisms behind the formation and

melting of the helical strands.

The network entropy was found to be controlled by the

helical content, decreasing where the latter increases and

vice-versa, except at the highest strains and temperatures,

where no significant helical content develops. At tempera-

tures far above that of the helix-coil transition, the entropy

always decreases with increasing strain. However, at

temperatures close to the transition temperature, the entropy

first decreases and then increases with increasing strain.

This behavior is a consequence of the formation and melting

of the helical beads by the applied strain. The heat capacity

of the network was found to reach a maximum at higher

temperatures for larger strains, indicating an increased

helix-coil transition temperature for the network.

In the near future we plan on improving this model by

avoiding the use of the Three-chain model. Instead, we will

use a finite representation of the network and adapt the

Monte Carlo simulation method developed by Escobedo

and de Pablo [9] to our system [19].
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